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ABSTRACT

We give a comprehensive introduction to the reduced support vector machine, its

extensions and applications. We describe original RSVM algorithm and the statistical

theory behind it. Three schemes for selecting the representative reduced set are intro-

duced. These schemes lead to a smaller reduced set than the random sampling scheme

without sacrificing prediction accuracy. Although smaller reduced set will have faster

support vector machine training, one has to pay extra CPU time in learning the re-

duced set selection. In addition to classification, applications of reduced kernel trick to

regression and dimension reduction are also included in this survey paper. We finally

embed the RSVMs in the MapReduce framework for extremely large scale datasets.

Some preliminary numerical studies show that RSVMs in MapReduce framework has

a good potential for solving large scale nonlinear support vector machines. We believe

that the reduced kernel trick will be an important technique in the Big Data era.

Key words and phrases: Big Data, Dimension Reduction, Kernel Methods, Reduced

Kernel Trick, Supervised Learning, Support Vector Machine.
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1. Introduction

In the last decade, support vector machines (SVMs) have become one of the most

promising algorithms for classification and regression problems (Burges, 1998; Smola

and Schölkopf, 2004) as well as other learning tasks such as dimension reduction (Al-

paydin, 2004; Cook, 1998), semi-supervised learning (Pedrycz and Rai, 2008; Zhou and

Li, 2005; Blum and Mitchell, 1998), etc. The success of SVMs is due to two main im-

portant reasons. First, the SVM algorithm is rooted in the statistical learning theory,

namely, the structural risk minimization (Vapnik, 2000). By minimizing the training

errors and model complexity at the same time, SVM classifier is able to cope with the

high-dimensionality in nonparametric modeling so that it has good generalization abil-

ity. Secondly, the kernel trick has been introduced to bring the training data from the

input space to a high dimensional even infinite dimensional feature space via an implic-

itly defined nonlinear mapping. Then, the SVM classifier is built in this feature space.

Via the use of the kernel trick, variants of SVMs have successfully incorporated flexible

and effective nonlinear models. However, there are some major challenges for nonlinear

SVM with massive data due to the fully dense kernel matrix. This kernel matrix has

size ℓ× ℓ, where ℓ is the size of the training dataset. To overcome these computational

difficulties, some researchers have proposed low-rank approximation to the full kernel

matrix (Zhang et al., 2008; Williams and Seeger, 2001). The reduced support vector

machine (RSVM, Lee and Huang (2007)) is an alternative. The key ideas of RSVM are

as follows. Prior to training, it randomly selects a small portion of dataset to generate

a thin rectangular kernel matrix. It is a small submatrix of the full squared kernel

matrix. Then it uses this much smaller rectangular kernel matrix to replace the full

kernel matrix in the nonlinear SVM formulation. Memory usage and the computational

time will be cut down dramatically both in kernel matrix generating as well as in the

SVM training. As a result, RSVM also simplifies the characterization of the nonlin-

ear separating surface. Thus, it will be more efficient in the testing phase. According

to intensive numerical comparisons in (Lee and Huang, 2007; Lee and Mangasarian,

2001), though RSVM usually has higher training error than the nonlinear SVM with

full kernel, it has comparable, or even slightly smaller testing error. In other words,
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RSVM has comparable, or slightly better generalization ability. This phenomenon can

be interpreted by the Occam’s razor (Blumer et al., 1987). Some theoretical investi-

gation on reduced kernel can be found in (Lee and Huang, 2007; Chang et al., 2013).

In this paper, we aim to give a comprehensive introduction to RSVM and its applica-

tions. We begin with an introduction to reduced kernel trick, functional approximation

justification behind it and related statistical properties in Section 2 for support vector

classification and regression. Random subset is the computationally cheapest way for

obtaining reduced sets. In Section 3 we introduce three different sampling schemes

other than the random subset, namely, incremental selection, systematical selection

and selection by clustering. In Section 4, we include an extension of RSVM to di-

mension reduction. In Section 5, we describe RSVM under the MapReduce framework

so that it has the ability to solve large scale nonlinear support vector machines. The

reduced kernel trick has the potential as an important technique in the Big Data era.

We conclude the paper in Section 6.

A word about our notation and background material is given below. All vectors

will be column vectors unless transposed to a row vector by a superscript ⊤. For a

vector x in the d-dimensional real space Rd, the plus function x+ is defined as (x+)i =

max {0, xi}, while the step function x∗ is defined as (x∗)i = 1 if xi > 0 else (x∗)i = 0,

i = 1, . . . , d. The scalar (inner) product of two vectors x and z in the d-dimensional

real space Rd will be denoted by x⊤z and the p-norm of x will be denoted by ∥x∥p.

For a matrix A ∈ Rℓ×d, Ai is the ith row of A which is a row vector in Rd. A

column vector of ones of arbitrary dimension will be denoted by 1. For A ∈ Rℓ×d and

B ∈ Rd×m, the kernel K(A,B) maps Rℓ×d×Rd×m into Rℓ×m. In particular, if x and z

are column vectors in Rd then, K(x⊤, z) is a real number, K(x⊤, A⊤) is a row vector

in Rℓ and K(A,A⊤) is an ℓ× ℓ matrix. The difference of two sets A and B is defined

as A \B = {x|x ∈ A and x /∈ B}.
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2. Reduced Support Vector Machine: Classification and Regression

We consider the supervised learning problems, classification and regression, here.

We are given a training dataset,

S = {(xi, yi)| i = 1, 2, . . . , ℓ} ⊂ Rd × Y.

Each instance xi is a point in the d-dimensional real space Rd and comes with a

class label yi ∈ Y. We would like to construct a decision function h : Rd → Y in

an inductive way based on the given dataset S. The image of xi, h(xi) should be

equal to or very close to yi ∈ Y. Thus, we can predict the class label of a new instance

x that does not appear in the given training dataset S with h(x), the image of x. For

the classification problems, the label set Y is a finite set, for example Y = {1, 2, . . . , c}.

In particular, Y = {−1,+1} will be a binary classification problem. If Y = R, then it

will represent a regression problem.

2.1 Smooth Support Vector Machine

In classification problems, support vector machine (SVM) determines an optimal

separating hyperplane that classifies data points into different categories. Here, “opti-

mality” refers to the sense that the separating hyperplane has the best generalization

ability for unseen data points, based on statistical learning theory. The conventional

SVM (Vapnik, 2000) can be formulated as follows:

min
(w,b,ξ)∈Rd+1+ℓ

1

2
∥w∥22 + C

ℓ∑
i=1

ξi (1)

s.t. yi(w
⊤xi + b) + ξi ≥ 1 ,

ξi ≥ 0, for i = 1, 2, . . . , ℓ ,

where C > 0 is a positive parameter that balances the weight of the penalty term∑ℓ
i=1 ξi and the regularization term 1

2∥w∥22. Minimizing 1
2∥w∥22 is equivalent to

maximizing the margin between two parallel bounding planes as well as minimizing

the VC-error bound (Vapnik, 2000). By solving the optimization problem, we have the

decision function h(x) = w⊤x+ b for the unseen instance x.
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The conventional support vector machine formulation (1) is a standard convex

quadratic program (Bertsekas, 1999; Mangasarian, 1994; Nocedal andWright, 2006).

The Wolfe dual problem of (1) is expressed as follows:

min
α∈Rℓ

ℓ∑
i=1

αi −
1

2

ℓ∑
i=1

ℓ∑
j=1

yiyjαiαjx
⊤
i xj (2)

s.t.

ℓ∑
i=1

yiαi = 0 ,

0 ≤ αi ≤ C for i = 1, 2, . . . , ℓ ,

where x⊤
i xj is the inner product of xi and xj . The primal variable w is given by:

w =
∑
αi>0

yiαixi . (3)

The decision function is expressed by

h(x) =
∑
αi>0

yiαix
⊤
i x+ b.

In contrast to the conventional SVM of (1), smooth support vector machine (SSVM,

Lee and Mangasarian (2001)) minimizes the square of the 2-norm of the slack vector

ξ. In addition, SSVM prefers a solution with a small value of b (also in 2-norm). This

leads to the following minimization problem: (1) is expressed as follows:

min
(w,b,ξ)∈Rd+1+ℓ

1

2
(∥w∥22 + b2) +

C

2

ℓ∑
i=1

ξ2i (4)

s.t. yi(w
⊤xi + b) + ξi ≥ 1

ξi ≥ 0, for i = 1, 2, . . . , ℓ .

As a solution of (4), ξ is given by ξi = {1 − yi(w
⊤xi + b)}+ for all i, where the

plus function x+ is defined as x+ = max{0, x}. Thus, we can replace ξi in (4) by

{1− yi(w
⊤xi + b)}+. It converts the problem (4) into an unconstrained minimization

problem as follows:

min
(w,b)∈Rd+1

1

2
(∥w∥22 + b2) +

C

2

ℓ∑
i=1

{1− yi(w
⊤xi + b)}2+ . (5)
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Compared to (4), this formulation reduces the number of variables from d + 1 + ℓ to

d+1. However, the objective function to be minimized is no longer twice differentiable.

In SSVM, we prefer a twice differentiable form so that a fast Newton method can be

applied. We approximate the plus function x+ by a smooth p-function:

p(x, β) = x+
1

β
log(1 + e−βx) , (6)

where β > 0 is the smooth parameter which controls the “steepness” of the curve or

the closeness to the original plus function x+. By replacing the plus function x+ with

a very accurate approximation p-function, it gives the SSVM formulation:

min
(w,b)∈Rd+1

1

2
(∥w∥22 + b2) +

C

2

ℓ∑
i=1

p({1− yi(w
⊤xi + b)}, β)2 . (7)

The objective function in problem (7) is strongly convex and infinitely differentiable.

Hence, it has a unique solution and can be solved by using a fast Newton-Armijo

algorithm which is globally and quadratically convergent (Lee and Mangasarian, 2001).

2.2 Reduced Smooth Support Vector Machine

In many cases, a dataset, as collected in a vector form full of attributes, cannot be

well separated by a linear separating hyperplane. However, it is likely that the dataset

becomes linearly separable after mapped into a higher dimensional space by a nonlinear

map. A nice property of SVM methodology is that we do not even need to know the

nonlinear map explicitly; still, we can apply a linear algorithm to the classification

problem in the high dimensional space. The property comes from the dual form of

SVM which can express the formulation in terms of inner product of data points. By

taking the advantage of dual form, the “kernel trick” is used for the nonlinear extension

of SVM. From the dual SVM formulation (2), all we need to know is simply the inner

product between training data vectors. Let us map the training data points from the

input space Rd to a higher-dimensional feature space F by a nonlinear map Φ. The

training data x in F becomes Φ(x). Based on the above observation, if we know the

inner product Φ(xi)
⊤Φ(xj) for all i, j = 1, 2, . . . , ℓ, then we can perform the linear

SVM algorithm in the feature space F . The separating hyperplane will be linear in the

feature space F but is a nonlinear surface in the input space Rd (see Figure 1).
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Figure 1: The illustration of nonlinear SVM

Note that we do not need to know the nonlinear map Φ explicitly. It can be achieved

by employing a kernel function. Let K(x⊤, z) : Rd×Rd → R be an inner product kernel

function satisfying Mercer′s condition (Burges, 1998; Cherkassky and Mulier, 1998;

Courant and Hilbert, 1953; Cristianini and Shawe-Taylor, 1999; Vapnik, 2000). We

can construct a nonlinear map Φ such that K(x⊤
i ,xj) = Φ(xi)

⊤Φ(xj), i, j = 1, 2, . . . , ℓ.

Hence, the linear SVM formulation can be used on Φ(x) in the feature space F by

replacing the x⊤
i xj in the objective function of (2) with a nonlinear kernel function

K(x⊤
i ,xj). For the nonlinear case, the formulation of SSVM (7) can be extended to

the nonlinear version by utilizing the kernel trick as follows:

min
(u,b)∈Rℓ+1

1

2
(∥u∥22 + b2) +

C

2

ℓ∑
i=1

p([1− yi {
ℓ∑

j=1

ujK(x⊤
i ,xj) + b} ], β)2 , (8)

where K(x⊤
i ,xj) is a kernel function. The nonlinear SSVM decision function h(x) can

be expressed as follows:

h(x) =
∑
uj ̸=0

ujK(x⊤
j ,x) + b . (9)

Nowadays very often we have classification or regression problems with massive

data, such as data from network traffic, gene expressions, web documents, etc. In a

large scale SVM, the full kernel matrix will be very large and dense, so it may not be

appropriate to use the full kernel matrix when dealing with (8). To avoid facing such

a large and dense full kernel matrix, we brought in the reduced kernel technique (Lee

and Huang, 2007; Chang et al., 2013). The key idea of the reduced kernel technique
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is to randomly select a small portion of data and to generate a thin rectangular kernel

matrix, then to use this much smaller rectangular kernel matrix to replace the full

kernel matrix. In the process of replacing the full kernel matrix by a reduced kernel,

we use the Nyström approximation (Smola and Schölkopf, 2000; Williams and Seeger,

2001) for the full kernel matrix:

K(A,A⊤) ≈ K(A, Ã⊤)K(Ã, Ã⊤)−1K(Ã, A⊤) , (10)

where Ã
ℓ̃×d

is a subset of A = {xi}ℓi=1 and K(A, Ã⊤) = K̃
ℓ×ℓ̃

is a reduced kernel.

Thus, we have

K(A,A⊤)u ≈ K(A, Ã⊤)K(Ã, Ã⊤)−1K(Ã, A⊤)u = K(A, Ã⊤)ũ , (11)

where ũ ∈ Rℓ̃. The reduced kernel technique was invented for dealing with large

dataset. Thus, ℓ̃ ≪ ℓ. By using the approximation, reduced SVM randomly selects a

small subset Ã to generate the dictionary function set B̃:

B̃ = {1} ∪ {K(·,xi)}ℓ̃i=1

The formulation of reduced SSVM, hence, is expressed as follows:

min
ũ,b

1

2
(
∥∥ũ∥∥2

2
+ b2) +

C

2

ℓ̃∑
i=1

p([1− yi {
ℓ̃∑

j=1

ũjK(x⊤
i ,xj) + b} ], β)2 (12)

and its decision function is in the form

h(x) =

ℓ̃∑
j=1

ũjK(x⊤,xj) + b . (13)

The reduced kernel method constructs a compressed model and cuts down the com-

putational cost for SSVM from O(ℓ3) to O(ℓ̃3). It has been shown that the solution

of reduced kernel matrix approximates the solution of full kernel matrix well and with

theoretical error bounds (Lee and Huang, 2007; Chang et al., 2013).
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2.3 ε-Support Vector Regression

In regression problems, the class label set Y belongs to real numbers. We would like

to find a linear or nonlinear regression function, h(x), that tolerates a small error in

fitting the given dataset. It can be achieved by utilizing the ε-insensitive loss function

that sets an ε-insensitive “tube” around fitted model. When the errors between the

observed data values and fitted values are within the ε-tube, they are not counted into

the loss function. Only errors go beyond the ε-tube are counted.

We start with the linear case, that is the regression function h(x) defined as h(x) =

w⊤x+b. The SVR minimization can be formulated as an unconstrained problem given

by:

min
(w,b,ξ)∈Rd+1+ℓ

1

2
∥w∥22 + C

ℓ∑
i=1

|ξi|ε , (14)

where |ξi|ε = max{0, |w⊤xi + b − yi| − ε} represents the fitting error and the positive

control parameter C here weights the tradeoff between the fitting errors and the flatness

of the linear regression function f(x). Similar to the idea in SVM, the regularization

term ∥w∥22 in (14) is also applied for improving the generalization ability. To deal with

the ε-insensitive loss, conventionally it is reformulated as a constrained minimization

problem defined as follows:

min
(w,b,ξ,ξ∗)∈Rd+1+2ℓ

1

2
∥w∥22 + C

ℓ∑
i=1

(ξi + ξ∗i ) (15)

s.t. w⊤xi + b− yi ≤ ε+ ξi ,

−w⊤xi − b+ yi ≤ ε+ ξ∗i ,

ξi, ξ
∗
i ≥ 0 for i = 1, 2, . . . , ℓ .

This formulation (15) is equivalent to the formulation (14) and its corresponding dual
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form is

max
α,α̂∈Rℓ

ℓ∑
i=1

(α̂i − αi)yi − ε

ℓ∑
i=1

(α̂i + αi) (16)

−
ℓ∑

i=1

ℓ∑
j=1

(α̂i − αi)(α̂j − αj)x
⊤
i xj ,

s.t.

ℓ∑
i=1

(α̂i − αi) = 0 ,

0 ≤ αi, α̂i ≤ C , for i = 1 , . . . , ℓ .

From (16), one can apply the kernel trick on this dual form of ε-SVR for nonlinear

extension. That is, x⊤
i xj is directly replaced by a kernel function K(x⊤

i ,xj) as follows:

max
α,α̂∈Rℓ

m∑
i=1

(α̂i − αi)yi − ε
ℓ∑

i=1

(α̂i + αi) (17)

−
ℓ∑

i=1

ℓ∑
j=1

(α̂i − αi)(α̂j − αj)K(x⊤
i ,xj) ,

s.t.
ℓ∑

i=1

(α̂i − αi) = 0 ,

0 ≤ αi, α̂i ≤ C , for i = 1 , . . . , ℓ ,

with the decision function h(x) =
ℓ∑

i=1
(α̂i − αi)K(x⊤

i ,x) + b .

Similar to the smooth approach in SSVM, the formulation (14) can be modified

slightly as a smooth unconstrained minimization problem. Before we derive the smooth

approximation function, we show some interesting observations:

|x|ε = (x− ε)+ + (−x− ε)+ (18)

and

(x− ε)+ · (−x− ε)+ = 0 for all x ∈ R and ε > 0 . (19)

Thus we have

|x|2ε = (x− ε)2+ + (−x− ε)2+ . (20)
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It is straightforward to replace |x|2ε by a very accurate smooth approximation given by:

p2ε(x, β) = (p(x− ε, β))2 + (p(−x− ε, β))2 . (21)

We use this approximation p2ε-function with smoothing parameter β to obtain the

smooth support vector regression (ε-SSVR, Lee et al. 2005)):

min
(w,b)∈Rd+1

1

2
(∥w∥22 + b2) +

C

2

ℓ∑
i=1

p2ε(w
⊤xi + b− yi, β) , (22)

where p2ε(w
⊤xi + b− yi, β) is defined as (21). For the nonlinear case, this formulation

can be extended to the nonlinear ε-SSVR by using the kernel trick as follows:

min
(u,b)∈Rℓ+1

1

2
(∥u∥22 + b2) +

C

2

ℓ∑
i=1

p2ε(

ℓ∑
j=1

ujK(x⊤
j ,xi) + b− yi, β) , (23)

where K(x⊤
i ,xj) is a kernel function. The nonlinear ε-SSVR decision function h(x)

can be expressed as follows:

h(x) =

ℓ∑
i=1

uiK(x⊤
j ,x) + b . (24)

Note that the reduced kernel technique can be applied to ε-SSVR when encountering

a large scale regression problem.
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Figure 2: The nested uniform design (UD) model selection with a 13-points UD at the

first stage and a 9-points UD at the second stage
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2.4 Model Selection of SVMs

Choosing a good parameter setting for a better generalization performance of SVMs

is the so called model selection problem. Model selection is usually done by minimizing

an estimate of generalization error. This problem can be treated as finding the max-

imum (or minimum) of a function which is only vaguely specified and has many local

maxima (or minima).

Suppose the Gaussian kernel

K(x⊤, z) = e−γ||x−z||22 ,

is used, where γ is the width parameter. The nonlinear SVM requires two parameters C

and γ. The most common approach for SVMmodel selection is probably based on cross-

validation over a certain parameter grids, and an exhaustive grid search is adopted. The

exhaustive grid search forms a two dimension uniform grid (say p × p) of points in a

pre-specified search range to find a good combination for C and γ. It is obvious that

the exhaustive grid search is computationally expensive. Many improved methods have

been proposed to reduce the number of trials in parameter combinations (Keerthi and

Lin, 2003; Chapelle et al., 2002; Larsen et al., 1998; Bengio, 2000; Staelin, 2003; Huang

et al., 2007). Here we focus on the 2-stage uniform design (UD) model selection in

Huang et al. (2007) due to its good efficiency. The 2-stage UD procedure first sets out

a crude search for a highly likely candidate region of global optimum and then confines

a finer second-stage search therein. We use Figure 2 for a pictorial illustration of the

2-stage UD procedure. At the first stage, we use a 13-runs UD sampling pattern in an

appropriate search range in log-scale. At the second stage, we halve the search range

for each parameter coordinate and let the best point from the first stage be the center

point of the new search box. Then we use a 9-runs UD sampling pattern in this new

search box. Moreover, to deal with large sized datasets, we combine a 9-runs and a

5-runs sampling pattern at these two stages. The performance in (Huang et al., 2007)

shows merits of the nested UD model selection method. Besides, the method of nested

UDs is not limited to 2 stages and can be applied in a sequential manner and one may

consider a finer net of UDs to start with.
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3. Selection Schemes for Reduced Set

As we explained in the previous section, the decision function h(x) is represented

as a linear combination of the entire dictionary function set B = {1} ∪ {K(·,xi)}ℓi=1

based on the given training set for the conventional nonlinear SVMs. While RSVM

randomly selects a small dictionary subset B to represent the decision function h(x).

Although the original random selection scheme is very simple to implement and has

a good theoretical foundation (Lee and Huang, 2007), it will need a sufficient large

reduced set to guarantee the performance. In this section, we describe three schemes

for selecting the most informative instances using different criteria.

3.1 Incremental Reduced Support Vector Machines

In this section, we introduce Incremental Reduced Support Vector Machine (IRSVM)

algorithm that automatically and incrementally selects informative data points from

the training set to generate the thin rectangular kernel matrix used in RSVM (Lee et

al., 2003). The decision function h(x) is represented as a linear combination of kernel

functions in the reduced dictionary subset. Intuitively, if the kernel functions in the

dictionary subset are very “similar”, the hypothesis space spanned by this dictionary

subset will be very limited. Based on this intuition, Lee et al. (2003) propose a process

that sequentially adding a kernel function into the dictionary subset, only when the

function is “dissimilar” to the current dictionary subset and carrying sufficient extra

information over the current subset. Here the dissimilarity is measured by the distance

between a kernel vector and the column space of the rectangular kernel matrix gener-

ated by current dictionary subset. Suppose that we start with a very small reduced

set Ã, typically a size of 2, then we add a new data point xi into the reduced set only

when the extra information carried in the vector K(A,xi) ∈ Rℓ×1 with respect to the

column space of K(A, Ã⊤) is greater than a certain positive threshold. This can be

achieved by solving a least squares problem. Let K̃ = K(A, Ã⊤) ∈ Rℓ×ℓ̃. The least

squares problem we need to solve is

min
β∈Rℓ̃

∥∥∥K̃β −K(A,xi)
∥∥∥2
2
, (25)
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where β ∈ Rℓ̃ is a free vector variable and K̃β ∈ Rℓ is a linear combination of the func-

tions K(A,xi), i = 1, . . . , ℓ̃ that represents a vector in the column space of K(A, Ã⊤).

According to the first order optimality condition (Bertsekas, 1999; Mangasarian, 1994),

finding out the optimal solution β∗ of above problem (25) is equivalent to solving a sys-

tem of normal equations:

K̃⊤K̃β = K̃⊤K(A,xi). (26)

If the columns of the rectangular kernel matrix generated by the initial reduced set

are linearly independent, our IRSVM algorithm will keep the independence property

throughout the whole process, so that the least squares problem (25) has a unique

solution β∗,

β∗ = (K̃⊤K̃)−1K̃⊤K(A,xi). (27)

The distance r from K(A,xi) to the column space of K̃ is the squared root of the

optimal value of (25) and is computed by

r =
∥∥∥K̃β∗ −K(A,xi)

∥∥∥
2
. (28)

The square distance can be written in the form r2 = (I − P )K(A,xi), where P =

K̃(K̃⊤K̃)−1K̃⊤ is the projection matrix of Rℓ̃ onto the column space of K̃. In other

words, r2 represents the amount of the extra information carried in K(A,xi) over

K(A, Ã⊤). Note that the size of the reduced set is very small, hence it will not lead to

any computational difficulty in solving the least squares problem, though we have to

solve it many times in the whole process. In fact, the time complexity of this step is

O(ℓ̃3), where ℓ̃ is the current size of the reduced set. That is the main cost of solving

the normal equations depends on K̃⊤K̃, but not on K(A,xj). We describe the IRSVM

algorithm in Algorithm 1.

A bigger δ will make a new instance be more difficult to be added into the reduced

set. If the IRSVM algorithm ends up with a too small reduced set then the performance

of the RSVM may not be satisfactory. In this case, we should lower down the threshold

value. A reduced set generated by a bigger threshold value can be used as the initial

reduced set for a new threshold.
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Algorithm 1 Incremental Reduced Support Vector Machine (IRSVM)

Require: Given a certain threshold δ and a small initial reduced set Ã0.

Ensure: Return a reduced set, Ã and the corresponding rectangular kernel matrix,

K(A, Ã⊤) for RSVM.

0) Let Ãnew = Ã0 and compute K(A, Ã⊤

new).

1) Randomly choose an instance xj ∈ A \ Ãnew.

2) Compute the distance r between the kernel vector K(A,xj) and the column space

of K(A, Ã⊤

new) by using the equation (28).

3) IF r ≥ δ THEN Ãnew = Ãnew ∪ xj

4) Repeat Step 1) to Step 3) until several successive points are fail in Step 3).

5) Output Ã = Ãnew and K(A, Ã⊤) = K(A, Ã⊤

new).

Algorithm 2 Systematic Sampling Algorithm for Reduced Set

Require: Given an extremely small initial reduced set Ã0, the RSVM decision function

h0(x) based on Ã0 and a validation dataset and a threshold.

Ensure: The final RSVM decision function h(x).

0) Let I+ be the index set of misclassified instances of positive examples from the

training set, i.e., I+ = {i|h(xi) < 0, xi is a positive instance}. Similarly, let I− =

{i|h(xi) > 0, xi is a negative instance}.

1) Sort the sets I+ and I− by the values of h(xj) separately. Let S+ and S− be the

resulting sorted sets.

2) Partition S+ and S− into k (roughly) equal-sized subsets.

3) Randomly select an instance from each subset to form a new reduced set and generate

the RSVM decision function h(x) by using this new reduced set.

4) Evaluate the performance of h(x) on the given validation set.

5) Repeat Step 0) to Step 4) until the accuracy of h(x) on the validation excesses the

threshold.

6) Return the decision function h(x).

3.2 Generating the Reduced Set by Systematic Sampling

The second scheme for selecting the reduced set is based on the systematic sampling

strategy (Chien et al., 2010). We start with an extremely small reduced set Ã0. Imagine

that the decision function h0(x) will then be poor due to the insufficient size of the

reduced set. There will be quite some misclassified points xi such that yi ·h0(xi) < 0.
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How should we improve upon the current decision function? We suggest to treat these

misclassified points as candidate instances for a new reduced set. A uniform sampling

scheme is adopted to choose a small portion of data from this candidate set and use them

to expand the reduced set. This procedure can be repeated until the decision function

h(x) achieves a satisfactory level. We describe this procedure in the Algorithm 2.

3.3 Clustering Model Selection for Reduced Support Vector Machines

The third scheme is based on the k-means clustering algorithm (Chien et al., 2010).

Within each class, k-means algorithm is used to find representative points. In this

scheme, we also explore the distribution of each cluster. That will suggest a radius

estimation for each cluster. We will use this information to tune the width parameter in

the Gaussian kernel. The Gaussian kernel is also named radial basis function (RBF)

kernel. Different from the previous three schemes, including the random selection,

the dictionary function set in this approach is more flexible. In fact, the reduced set

generated by this mechanism is not a subset of original training dataset. Before we

state the algorithm, we look at the form of Gaussian or RBF kernel,

K(x, c) = e−
∥x−c∥22

2σ2 ,

where σ is the width parameter and c is the centroid. In Oyang and Hwang (2002),

the authors propose an estimation for the width parameter σ as follows,

σ =
R(c) · δ ·

√
π

d

√
(nr + 1)Γ(d2 + 1)

, where δ ·
√
π = 1.6210 (29)

and R(c) is defined as

R(c) =
d+ 1

d

 1

nr

nr∑
q=1

∥xq − c∥2

 , (30)

where d is the dimensionality, Γ(·) is the Gamma function, and x1,x2, . . . ,xnr are the

nr nearest instances to the cluster centroid c. In the case, where the cluster size is

smaller than nr, we use all instances in that cluster to compute R(c). This estimation

of the width parameter reflects the distribution of the clusters in d-dimensional space.

The detailed procedure is presented in Algorithm 3.
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Algorithm 3 Clustering Reduced Support Vector Machine

Require: Let k be the number of clusters within each class and nr be a positive integer

for nr-nearest neighbors.

Ensure: Return the RSVM decision function h(x).

0) For both classes, run the k-means algorithm to find the cluster centroids {c+j , c
−

j }
k
j=1.

1) Use these cluster centroids from both classes to form the reduced set:

Ã = [c+1 , c
+
2 , . . . , c

+
k , c

−

1 , c
−

2 , . . . , c
−

k ]
⊤ ∈ R

2k×d.

2) For each centroid, compute the width parameters σ+j and σ−j by (29) for RBF kernel

functions :

σ+j =
R(c+j )·δ·

√
π

d
√
(nr+1)Γ(

d
2
+1)

or σ−j =
R(c−j )·δ·

√
π

d
√
(nr+1)Γ(

d
2
+1)

for 1 6 j 6 k.

3) Generate the rectangular kernel matrix K(A, Ã⊤) ∈ R
ℓ×2k and its columns are

K(A, c+j ) = [e
−
‖x1−c

+
j
‖2
2

2σ
+2
j , e

−
‖x2−c

+
j
‖2
2

2σ
+2
j , . . . , e

−
‖xℓ−c

+
j
‖2
2

2σ
+2
j ]⊤ or

K(A, c−j ) = [e
−
‖x1−c

−
j
‖2
2

2σ
−2
j , e

−
‖x2−c

−
j
‖2
2

2σ
−2
j , . . . , e

−
‖xℓ−c

−
j
‖2
2

2σ
−2
j ]⊤ for 1 6 j 6 k.

4) Generate the RSVM decision function h(x) with K(A, Ã⊤).

4. Applications to Dimension Reduction

Dimension reduction is an important topic in machine learning and data mining.

The main demand comes from complex data analysis, data visualization, and parsi-

monious modeling. Modern data are usually complex, high dimensional, and with

nonlinear structures. Dimension reduction techniques can help us to characterize the

key data structure using only a few main features ranked by their importance. It thus

provides a way for data visualization to gain better intuitive insights of the underlying

data. In this section, we will apply our reduced kernel technique to three classical

dimension reduction methods: principal component analysis, sliced inverse regression,

and canonical correlation analysis.

4.1 Kernel Principal Component Analysis

PCA is a well known unsupervised dimension reduction method, which determines

the principal directions of the data distribution. To obtain these principal direc-

tions, one needs to construct the data covariance matrix and calculate its dominant

eigenvectors. These eigenvectors will be the most informative among the vectors
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in the original data space, and are thus considered as the principal directions. Let

A = [x⊤
1 ;x

⊤
2 ; . . . ;x

⊤
ℓ ] ∈ Rℓ×d, where each row x⊤

i represents a data instance in a d-

dimensional space, and ℓ is the number of the instances. Typically, PCA is formulated

as the following optimization problem

max
U∈Rd×k, U⊤U=Ik

ℓ∑
i=1

U⊤(xi − x)(xi − x)⊤U, (31)

where U is a matrix consisting of k dominant eigenvectors and x is the global mean.

From this formulation, one can see that the standard PCA can be viewed as a task of

determining a subspace where the projected data has the largest variation.

Generally, the problem in (31) can be solved by deriving an eigenvalue decomposi-

tion of the covariance matrix, i.e.,

ΣAU = UΛ, (32)

where the covariance matrix is given by

ΣA =
1

ℓ

ℓ∑
i=i

(xi − x)(xi − x)⊤. (33)

Each column of U represents an eigenvector of ΣA, and the corresponding diagonal

entry in Λ is the associated eigenvalue. For the purpose of dimension reduction, the

last few eigenvectors will be discarded due to their negligible contribution to the data

variation.

Similar to SVM, the kernel trick can also be applied to PCA and it results in kernel

PCA (KPCA, Schölkopf et al. (1998)). Let Φ be a nonlinear mapping from X to a

feature space F , and the kernel function K(x⊤, z) = Φ(x)⊤Φ(z). Using the kernel

trick, KPCA can be formulated as follows:

ΣKα = λα, (34)

where

ΣK =
1

ℓ

ℓ∑
i=1

(K(A,xi)− k)(K(A,xi)− k)⊤ ∈ Rℓ×ℓ, (35)
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where k = 1
ℓ

∑ℓ
i=1K(A,xi). When the sample size ℓ is large, the reduced kernel

technique introduced in Section 2 can be used to replace the full kernel to speed up the

computation. Let Ã ∈ Rℓ̃×d be the reduced set (often ℓ̃ ≪ ℓ), and the reduced KPCA

(Huang et al., 2009b) can be formulated as follows:

Σ
K̃
α̃ = λ α̃, (36)

where α̃ ∈ Rℓ̃ and Σ
K̃

is the covariance matrix of reduced kernel data K(A, Ã⊤) given

by

Σ
K̃

=
1

ℓ

ℓ∑
i=1

(K(Ã,xi)− k̃)(K(Ã,xi)− k̃)⊤ ∈ Rℓ̃×ℓ̃, (37)

where k̃ = 1
ℓ

∑ℓ
i=1K(Ã,xi). The reduced kernel method cuts the computational cost

from O(ℓ3) to O(ℓ̃3).

4.2 Kernel Sliced Inverse Regression

Sliced inverse regression (SIR) is first introduced by (Li, 1991), which shows that the

pattern e.d.r. subspace can be estimated by the leading directions from the generalized

eigenvalue decomposition of Cov {E(x|y)}, denoted by ΣE(x|y), with respect to Cov(x),

denoted by Σx. With x being standardized, SIR finds the leading directions, in which

the inverse regression function g(y) := E(x|y) has the largest variation. These are the

most informative directions in the input pattern space for describing y. In practical

supervised learning tasks, the joint distribution of the input vector x and the output

variable y is unknown. The empirical data version of sliced inverse regression finds the

dimension reduction directions by solving the following generalized eigenvalue problem:

ΣE(A|YJ )β = λΣAβ, (38)

where ΣA is the sample covariance matrix of A, YJ denotes the membership in slices

and there are J many slices, and ΣE(A|YJ ) denotes the between-slice sample covariance

matrix based on slice means given by

ΣE(A|YJ ) =
1

ℓ

J∑
j=1

ℓj(x
j − x)(xj − x)⊤.
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Here x is the sample grand mean, and xj = 1
ℓj

∑
i∈Sj

xj
i is the sample mean the jth

slice where Sj is the index set and ℓj is the sample size for the jth slice, respectively.

Note that the slices are extracted from A according to the sorted responses Y . For

classification, xj is simply the sample mean of input attributes for the jth class. The

solution, denoted by β1, gives the first e.d.r. direction such that slice means projected

along β1 are most spreading out, where β1 is normalized with respect to the sample

covariance matrix ΣA. Repeatedly solving this optimization problem with the orthog-

onality constraints β⊤k ΣAβl = δk,l, where δk,l is the Kronecker delta, the sequence of

solutions β1, . . . , βd forms the basis for e.d.r. subspace. Some insightful discussion to

enhance the SIR methodology and applications can be found in Chen and Li (1998).

The classical SIR is designed to find a linear transformation from the input space

to a low dimensional e.d.r. subspace that keeps as much information as possible for

the output variable y. However, it does not work for nonlinear feature extraction. To

improve the performance for nonlinear feature extraction, the kernel SIR (KSIR) can

easily describe key features by a few nonlinear components (Yeh et al., 2009; Wu, 2008).

Similar to KPCA, the vectors β can be represented by the linear combination of feature

data by kernel map. It then leads to the KSIR formulation:

ΣE(K|YJ )α = λΣKα, (39)

where ΣK is the sample kernel covariance matrix of K(A,A⊤) and ΣE(K|YJ ) denotes

the between-slice sample kernel covariance matrix based on slice means given by

ΣE(K|YJ ) =
1

ℓ

J∑
j=1

ℓj(k
j − k)(k

j − k)⊤,

where k
j
= 1

ℓj

∑ℓj
i=1K(A,xj

i ) and k = 1
ℓ

∑ℓ
i=1K(A,xi).

Similar to KPCA, using full kernel encounters a heavy computing load (even not

doable), and the effective rank of the covariance matrix of kernel data is very low. The

reduced kernel technique can also be applied to KSIR. Let Ã ∈ Rℓ̃×d be the reduced

set, and The reduced KSIR can be formulated as follows:

Σ
E(K̃|YJ )

α̃ = λΣ
K̃
α̃, (40)
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where α̃ ∈ Rℓ̃ and K̃ = K(A, Ã⊤). This approximation will enhance the numerical

stability without much information loss.

4.3 Kerenl Canonical Correlation Analysis

Given two sets of ℓ unlabeled observations As = [xs
1, . . . ,x

s
ℓ ]
⊤ ∈ Rℓ×ds and At =

[xt
1, . . . ,x

t
ℓ]
⊤ ∈ Rℓ×dt , CCA learns the projection vectors us ∈ Rds and ut ∈ Rdt , which

maximize the correlation coefficient ρ:

max
us,ut

ρ =
us⊤Σstu

t√
us⊤Σssus

√
ut⊤Σttut

, (41)

where Σst = 1
ℓ

∑ℓ
i=1(x

s
i − xs)(xt

i − xt)⊤, Σss = 1
ℓ

∑ℓ
i=1(x

s
i − xs)(xs

i − xs)⊤, Σtt =

1
ℓ

∑ℓ
i=1(x

t
i − xt)(xt

i − xt)⊤, and ρ ∈ [0, 1]. As proved in Hardoon et al. (2004), us in

(41) can be solved by a generalized eigenvalue decomposition problem:

Σst(Σtt)
−1Σ⊤

stu
s = ηΣssu

s. (42)

Once us is obtained, ut can be calculated by Σ−1
tt Σstu

s/η. Generally, one can derive

more than one pair of projection vectors {us
j}dj=1 and {ut

j}dj=1 with corresponding ρj in

descending order (i.e., ρj ≥ ρj+1) by the generalized eigenvalue decomposition problem

(42). Note that d is the dimensionality of the resulting CCA subspace.

Similar to SVM, the use of linear models for CCA might not be sufficient in de-

scribing data when deriving the feature subspace. To overcome this problem, nonlinear

mapping via kernel trick can be applied to CCA and it results in kernel CCA (KCCA,

Hardoon et al. (2004); Huang et al. (2009a)) as follows:

max
αs,αt

ρ =
αs⊤ΣKstα

t√
αs⊤ΣKsα

s
√
αt⊤ΣKtα

t
, (43)

where αs ∈ Rℓ and αt ∈ Rℓ are the projection vectors in the feature space,

ΣKst =
1

ℓ

ℓ∑
i=1

(K(As,xs
i )− k

s
)(K(At,xt

i)− k
t
)⊤, (44)

ΣKss =
1

ℓ

ℓ∑
i=1

(K(As,xs
i )− k

s
)(K(As,xs

i )− k
s
)⊤, (45)
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and

ΣKtt =
1

ℓ

ℓ∑
i=1

(K(At,xt
i)− k

t
)(K(At,xt

i)− k
t
)⊤. (46)

Note that k
s
= 1

ℓ

∑ℓ
i=1K(As,xs

i ) and k
t
= 1

ℓ

∑ℓ
i=1K(At,xt

i). As the covariance ma-

trices ΣKs and ΣKt in denominator are singular and their effective ranks are low, it

can cause some numerical difficulty in computing the solution pair {αs, αt}. To over-

come this problem, techniques like adding a additional regularization term or advancing

reduced kernels have been proposed.
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Figure 3: The MapReduce RSVM framework

For applying the reduced kernel technique to KCCA (Huang et al., 2009a), we let

Ãs and Ãt be subsets of As and At, and then we can replace the full kernel ma-

trices K(As, As⊤) ∈ Rℓ×ℓ and K(At, At⊤) ∈ Rℓ×ℓ by the reduced kernel matrices

K(As, Ãs⊤) ∈ Rℓ×ℓ̃ and K(At, Ãt⊤) ∈ Rℓ×ℓ̃, respectively. The reduced kernel version

for the KCCA now solves the following problem:

max
α̃s,α̃t

ρ =
α̃s⊤Σ

K̃st
α̃t√

α̃s⊤Σ
K̃s
α̃s
√
α̃t⊤Σ

K̃t
α̃t
, (47)

where Σ
K̃st

, Σ
K̃s

, and Σ
K̃t

are calculated by the same definition as (44), (45), (46) with

the reduced kernel matrices, respectively. Similar to (42), we can solve (47) via

Σ
K̃st

(Σ
K̃tt

)−1Σ⊤
K̃st

α̃s = ηΣ
K̃ss

α̃s. (48)

The reduced kernel method reduces the computational cost from O(ℓ3) to O(ℓ̃3) (typi-

cally ℓ̃≪ ℓ).
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5. Big Data Applications

Nowadays more and more data can be collected easily from different applications,

e.g., sensor networks, social networks, Internet documents, etc. How to deal with

such a large amount of data is a critical task for data analysts. To efficiently solve

for a nonlinear support vector machine with an extremely large dataset, we apply the

RSVM under the MapReduce framework for nonlinear model (as shown in Figure 3).

In our MapReduce RSVM (MRRSVM), the training procedure consists of steps of

Map and Reduce. In the Map-step, the original data are split into n stratified disjoint

subsets. Each data subset is used to learn an RSVM model associated with a reduced

subset distributively. Note that the associated reduced subset is much smaller than the

corresponding data subset. After processing these n RSVMmodels independently, these

models will be combined and concluded in the Reduce-step. More specifically, in the

Reduce-step we first collect all the instances from these n reduced subsets, and next we

encode each of these instances as an n-dimensional vector by its predicted values made

by these n RSVM models. That is, we can have a much more compact representation

for the reduced subsets (called Big Table in Figure 3), where the data size is equal

to the size of all the reduced subsets and the n-dimensional features are described by

those n RSVM models. Once we have extracted the compressed data as described

above, we apply the linear SVM to compressed data for concluding the final MRRSVM

model. The detailed training procedure is presented in Algorithm 4. For the MRRSVM

prediction phase, it also consists of Map and Reduce steps. In Map-step, each testing

data instance is first encoded as an n-dimensional vector using those n RSVM model

prediction values distributedly, which are learned from MRRSVM training phase. The

testing data prediction is then made by the MRRSVM model (i.e., the Reduce-step).

The detailed procedure for testing phase is also presented in Algorithm 5.

To evaluate the performance of our proposed MRRSVM, we test it on three datasets,

adult, connect-4 and shuttle from UCI machine learning repository (Frank and

Asuncion, 2010). Since we focus on binary classification, we transform the latter two

datasets from a multi-class problem to a binary classification problem by deleting partial

data. For the dataset connect-4, it has three classes: “win”, “draw”, and “lose”. We
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Algorithm 4 MapReduce RSVM training

Require: The big dataset A.

Ensure: RSVM models {modeli}
n
i=1, the reduced set of each subset {Ãi}, the linear

SSVM model (final model) with new features generated by {modeli}
n
i=1.

0) Split A into n subsets and their associated reduced sets: {Ai}
n
i=1 and {Ãi}

n
i=1.

1) Learn the RSVM modeli for each subset Ai with its reduced set Ãi

2) Generate a new representation B ∈ R
(
∑

ℓ̃i)×n (i.e., the Big Table) for the reduced

subsets and the jth row of B is represented as follows:

xnew
j = [model1(xj),model2(xj), . . . ,modeln(xj)]

⊤ ∈ R
n for xj ∈ {Ãi}

n
i=1

3) Learn the linear SSVM model with B:

final model ← linear SVM train(B)

4) Return {modeli}
n
i=1, {Ãi}

n
i=1, and final model.

delete the class “draw”. The dataset size is reduced from 67557 to 61108. We use

45227 instances as the training data and the remainder as testing data. For dataset

shuttle, it has 7 classes. About 80% of data belong to label “1”, and 15% of data

belong to label “4”. We use these two classes for this evaluation study. The size of

training data is reduced from 43500 to 40856, and the size of testing data is reduced

from 14500 to 13633. The results are shown in Table 1. From this table, it shows

that our proposed MRRSVM can achieve a comparable accuracy performance with

nonlinear SVM models, while the computational time can be dramatically reduced. It

indicates that MRRSVM has a good potential for large scale problems.

Algorithm 5 MapReduce RSVM prediction

Require: A testing instance xt, {modeli}
n
i=1, {Ãi}

n
i=1, and final model.

Ensure: Predicted label

0) Generate the new representation for the testing instance xt:

xnew
t = [model1(xt),model2(xt), . . . ,modeln(xt)]

⊤ ∈ R
n.

1) Predicted label ← sign(final model(xnew
t )).
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Table 1: The comparison for linear SSVM, nonlinear SSVM, and MRRSVM for large

datasets

Dataset Method Training time (CPU sec.) Accuracy (%)

linear SSVM 0.0704 82.41

adult nonlinear SSVM 4.6630 85.14

MRRSVM 0.6071 84.90

linear SSVM 0.2513 65.91

connect-4 nonlinear SSVM 8.8672 67.86

MRRSVM 0.8899 68.14

linear SSVM 0.0425 97.25

shuttle nonlinear SSVM 5.3293 99.97

MRRSVM 0.5374 99.97

6. Conclusion and Discussion

This survey paper gives a comprehensive introduction to the reduced support vector

machine, its extensions and applications. We start with the original RSVM algorithm

and some statistical theory behind it. While the conventional nonlinear support vector

machine has used a full model, RSVM can be viewed as a compressed model for repre-

senting the decision function for a given learning task. Generating a compressed model

will tremendously cut down the usage of memory and computational time complex-

ity. Thus, we can overcome the computational difficulties in dealing with large scale

problems. Moreover, RSVM trims down the model complexity thus it has a gain in

better generalization ability. The reduced kernel trick can be interpreted as Nyström

low rank approximation of the full kernel matrix combining the step of changing vari-

ables. This gives an intuitive justification for RSVM. We also describe three schemes

for selecting reduced set. These schemes will generate a smaller reduced set than the

random sampling scheme without sacrificing the prediction accuracy. Smaller reduced

set will have faster training time. However, there is no free lunch, we have to pay the

CPU time in training the reduced set selection. For simplicity, we still suggest the

random sampling selection scheme. On the other hand, if a more refined and compact

reduced set is preferable, then we should pay extra CPU time and resort to, e.g., the
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sampling schemes introduced here. The applications of reduced kernel trick in different

learning tasks and algorithms are also included in this survey paper. We finally embed

the RSVMs in the MapReduce framework and demonstrate some preliminary numer-

ical tests to show the potential for solving the nonlinear support vector machine with

extremely large scale datasets. We believe that the reduced kernel trick embedded in

the MapReduce framework can be an important technique in the Big Data era.
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摘 要

在此篇文章中我們將介紹縮減支撐向量機 (reduced support vec-

tor machine) 的數學模型, 其中包含在統計上的理論基礎、 延伸版本以

及在機器學習演算法上的應用。 主要的內容首先將包含三種不同縮減資

料集 (reduced set) 的篩選方法, 在實驗上我們也驗證透過這三種方法

所得到較精簡的縮減集亦可以達到非常良好之效果。 除了縮減資料集的

篩選方法之外, 我們也將介紹應用縮減支撐向量機之概念於機器學習演

算法的例子, 其中包含迴歸問題 (regression) 與資料維度縮減問題 (di-

mension reduction)。 最後, 由於所遭遇的問題資料量日趨龐大, 如何利

用非線性模型處理如此龐大之資料也是目前許多研究所關心的議題。 因

此, 我們也將介紹縮減支撐向量機於巨量資料的應用, 其中包含利用縮

減支撐向量機之概念於 MapReduce 的架構之中, 進而可以處理巨量資

料之問題。

關鍵詞: 巨量資料、 維度縮減、 核函數、 縮減核技巧、 監督式學習、 支撐向量法。
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